Evolutionary Unsupervised Kernel Regression

نویسنده

  • Oliver Kramer
چکیده

Dimension reduction and manifold learning play an important role in robotics, multimedia processing and data mining. For these tasks strong methods like Unsupervised Kernel Regression [4, 7] or Gaussian Process Latent Variable Models [5, 6] have been proposed in the last years. But many methods suffer from numerous local optima and crucial parameter dependencies. We use advanced methods from stochastic search to solve the embedded optimization problems of Unsupervised Kernel Regression. Furthermore, we apply a technique from Design of Experiments, i.e. Sequential Parameter Optimization, to tune the parameters and improve the algorithm’s performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary kernel density regression

The Nadaraya–Watson estimator, also known as kernel regression, is a density-based regression technique. It weights output values with the relative densities in input space. The density is measured with kernel functions that depend on bandwidth parameters. In this work we present an evolutionary bandwidth optimizer for kernel regression. The approach is based on a robust loss function, leave-on...

متن کامل

Covariance Matrix Self-Adaptation and Kernel Regression - Perspectives of Evolutionary Optimization in Kernel Machines

Kernel based techniques have shown outstanding success in data mining and machine learning in the recent past. Many optimization problems of kernel based methods suffer from multiple local optima. Evolution strategies have grown to successful methods in non-convex optimization. This work shows how both areas can profit from each other. We investigate the application of evolution strategies to N...

متن کامل

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

متن کامل

A Stochastic Optimization Approach for Unsupervised Kernel Regression

Unsupervised kernel regression (UKR), the unsupervised counterpart of the Nadaraya-Watson estimator, is a dimension reduction technique for learning of low-dimensional manifolds. It is based on optimizing representative low-dimensional latent variables with regard to the data space reconstruction error. The problem of scaling initial local linear embedding solutions, and optimization in latent ...

متن کامل

Kernel Regression Mapping for Vocal Eeg Sonification

This paper introduces kernel regression mapping sonification (KRMS) for optimized mappings between data features and the parameter space of Parameter Mapping Sonification. Kernel regression allows to map data spaces to highdimensional parameter spaces such that specific locations in data space with pre-determined extent are represented by selected acoustic parameter vectors. Thereby, specifical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009